Powering the XEM8350
The XEM8350 requires a clean, filtered, DC supply within the range of 5 V to 16 V. This supply may be delivered through the DC power connector (rated to 5 A max current) or through the mezzanine connectors (rated to 16 A max current).
The XEM8350 power distribution system is quite complex, with several supplies designed to provide suitable, efficient power for several systems and modules. A schematic diagram of the system follows, with input (+VDC) shown to the left and accessible supply rails shown to the right.

Power Supply
The XEM8350 is designed to be operated from a single 5-16-volt power source supplied through the DC power jack on the device. This provides power for the several high-efficiency switching regulators on-board to provide multiple DC voltages for various components on the device as well as three adjustable supplies for the peripheral.
DC Power Connector
The DC power connector on the XEM8350 is part number PJ-102AH from CUI, Inc. It is a standard “canon-style” 2.1mm / 5.5mm jack. The outer ring is connected to DGND. The center pin is connected to +VDC.
The PJ-102AH jack is rated for 5 A maximum continuous current. Applications requiring higher current must use the mezzanine connectors for providing power to the system (rated for a maximum of 16 A).
Power Budget
The table below can help you determine your power budget for each supply rail on the XEM8350. All values are highly dependent on the application, speed, usage, and so on. Entries we have made are based on typical values presented in component datasheets or approximations based on Xilinx power estimator results. Shaded boxes represent unconnected rails to a particular component. Empty boxes represent data that the user must provide based on power estimates.
The user may also need to adjust parameters we have already estimated (such as FPGA Vcco values) where appropriate. All values are shown in milliwatts (mW). Note that this table does not include the two supplies dedicated to the GTH transceivers. These are independent and can be computed separately for power budget based on their assigned function.
COMPONENT(S) | 0.95 V | 1.0 V | 1.2 V | 1.2 V | 1.8 V | 3.3 V | VIO_MC1 | VIO_MC2 |
---|---|---|---|---|---|---|---|---|
Programmable clock | 150 | |||||||
FX3 USB Host Interface | 385 | |||||||
DDR4 VDD/VDDQ | 2,290 | |||||||
DDR4 VTT Termination | 300 | |||||||
DDR VPP | 330 | |||||||
Misc System Functions | 2970 | |||||||
FPGA VCCINT, VCCINT_IO, VCCBRAM | ||||||||
FPGA MGTAVCC | 6,870 | |||||||
FPGA MGTAVTT | 1,810 | |||||||
FPGA MGTVCCAUX | 200 | |||||||
FPGA VCCAUX, VCCAUX_IO | 1,450 | |||||||
FPGA VCCO64 + VCCO65 (USB Host Interface) | 25 | |||||||
FPGA VCCO66 + VCCO67 + VCCO68 (DDR4) | 250 | |||||||
FPGA VCCO46 + VCCO47 + VCCO48 | ||||||||
FPGA VCCO24 + VCCO25 + VCCO44 + VCCO45 | ||||||||
Total (mW) | 6,870 | 1,810 | 2,840 | 2210 | 3,300 | |||
Available (mW) | 38,000 | 8000 | 2,400 | 4,800 | 7,200 | 6,600 | 2000 mA 1.8-3.3V | 2000 mA 1.8-3.3 V |
Example XEM8350-KU060 FPGA Power Consumption
XPower Estimator version 14.3 was used to compute the following power estimates for the Vccint supply. These are simply estimates; your design requirements may vary considerably. The numbers below indicate approximately 80% utilization.
COMPONENT | PARAMETERS | VCCINT POWER (MW) |
---|---|---|
Clock | 200 MHz GCLK, 400,000 fanout | 1,132 |
Clock | 300 MHz GCLK, 140,000 fanout | 954 |
Clock | 200 MHz SR, 50,000 fanout | 258 |
Logic | 200 MHz, 150,000 logic LUTs, 50,000 shift registers, 50,000 distributed RAMs, 400,000 registers | 2,766 |
Logic | 300 MHz, 50,000 logic LUTs, 140,000 registers | 487 |
Logic | 667 MHz (DDR4), 8000 logic LUTs | 155 |
BRAM | 18-bit, 200 MHz, 1000 block RAMs, 50% toggle rate | 2,636 |
BRAM | 36-bit, 300 MHz, 500 block RAMs, 50% toggle rate | 4,664 |
DSP | 500 MHz, 2200 slices, 12.5% toggle rate | 2,991 |
GTH | 32 channels, 16.3 Gb/s | 1,343 |
Misc. | DCM, PLL, VCCINT_IO, etc. | 500 |
Total | 17,886 mW | |
Available | 38,000 mW |
Heat Sink
The device has been fitted with two heat sink anchors, proximate to the FPGA for mounting a passive or active heat sink. The following heat sink has been tested with the XEM8350.
MANUFACTURER | PART NUMBER | DESCRIPTION |
---|---|---|
Opal Kelly Incorporated | FANSINK-40X40 | Active heatsink with DC fan |
The active heat sink above includes a small fan which connects to the fan controller on-board for manual or automatic fan speed control. The fan is powered directly by the input supply to the XEM8350. The fan is specified for a nominal operating voltage of 6-13.8 VDC. Supply voltages outside of this range might be possible, but could lead to fan startup and performance issues under certain conditions. The fan is powered directly by the input supply, and therefore the maximum fan RPM is related to the external supply voltage. Designs with high FPGA on-chip power consumption must take this into account when selecting an operating voltage and heat sink.
The FANSINK-40X40 is available for purchase directly from Opal Kelly.
Heat Sink Dimensions

DIY Fansink Solution
The following components may be used to craft a suitable replacement for the FANSINK-40X40:
Component | Digi-Key P/n | Description |
---|---|---|
Aavid 375024B60024G | Mouser 532-375024B60024 | Heatsink with anchor arms |
CUI CFM-3510CF-190-277 | Mouser 179-CFM3510CF190277 Digi-Key 2223-CFM-3510CF-190-277-ND | Fan |
McMaster-Carr 92196A235 | McMaster-Carr 92196A235 | Mounting bolt |
Molex 510210200 | Mouser 538-51021-0200 Digi-Key WM1720-ND | Power connector |
Molex 500798xxx | Digi-Key WM25388CT-ND | Crimp terminals |
Molex 500798xxx | Digi-Key WM15250-ND | Pre-crimped cable assemblies |